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ANALYSLS OF THE DILACEMENT FIE D FOR LOCALIZED DISTURBANCES
IN A STRATIFIED FLUID WITH SHEAR

INTRODUCTION

Many theoretical and experimental studies have been devoted to various aspects of
the two-dimensional collapse of a mixed region in a stratified fluid. Bell and Dugan [11
and Merritt (21 describe work in this area up to about 1974. Interest in the phenomenon
is due in large part to its relevance as a model for collapse of the turbulent wake of a self-
propellhd body moving through a stratified ocean.

The complexity of the phenomenon, which involves localized turbulent mixing in a
stratified fluid and the generation of internal waves, has led many investigators (3-101 to
study an initial-value problem involving a two-dimensional disturbance. Implicit in this
simplification is the assumption that no mixing occurs following the initial time. Schooley
and Stewart [11], in the first demonstration of the wake collapse phenomenon behind a
moving self-propelled body, int-oduced the use of such initial-value problems in order to
gain some understanding of the salient features of the collapse process.

We present here an analysis of an initial-value problem involving a localized distur-
bance in a stratified fluid which has a background shear. Although shear flows are gen-
erally present in the ocean, only the recent work of Hartman 161 incorporates shear in a
mathematical model of collapse. Our objective is to demonstrate that cwrtain features of
the displacement field of fluid particles :an be calculated directly from the initial data of
the problem. The calculation is made with the Lagrangian viewpoint and is valid for
finite-amplitude disturbances in an incompressible, viscous stratified fluid which is supposed
nondiffusivv.

In 4ddition we consider the inverse question whereby inferences about the nature of
the initial disturbance are drawn from data describing the shape of the initial perturbed
region. The results obtained may prove useful to experimentalists as a means for esti-
mating the degree of homogeneity of mixed regions.

The present results may be viewed as a generalization of earlier work 112) in wb ,h
the collapse occurred in fluid which was at rest outside the localized disturbance. From
a theoretical point of view both works give examples of the fact that the Lagrangian view
can be used to obtain exact information in some rather complicated situations.

An elementary application of the results is made to simplify an argument of Stock-
hausen, Jlark, and Kennedy [131 concerning zero net convergen..e above the region of
initial disturbance.

Manuscript submitted August 16, 1976.
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THE II L-VALUE PROBLEM

cae of Lamia Motion

The mathematical model we use is that of an incompressible, viscous, stratified flud
which is regarded a nondiffusive. The assumption that the fluid is nendiffusive means
that those quantities affecting the density, such as temperature and salinity, are not altered
by molecular diffusion. Consequently the density of each fluid particle remains unchanged
during its motion. The model is widely used in the study of stratified fluids [14].

The Eulerian form of the govemuig equations is

V-u = 0, (1)

d 0, (2)

du + Vp = -Vp +P +V T (3)

for al times t > 0. The fluid velocity is desigAated oy u, the density by pjthe pressure
by p, the constant gravitat onal field by 9, and the viscous stress i ensor hy T. The time
derivative in Eqs. (2) and (3) is the material derivative.

For simplicity we assume an infinite fluid, with no free surface and no bottom
boundary. Although the analysis to be carried out can be applied to many situations
involving a free surface or bottom boundary, tlhe discussion of all possible cases woulH be
unnecessarily long and might conceal the simplicity of the actual considerations involved
in ibhe analysis.

We use two cc.nrdinate frames (x, y, z) and (X, Y, Z) that are coincident to describe
the motion of the fluid. A time-dependent background s' ar motion described by the
velocity :Teld (U(y, t), 0, W(y, t)) is permitted. Superposed on this background motion

we suppose tiere tW be an initial lo,-dlized disturbance describ:-d by a local velocity dis-
turbance and a local deformation of the isopychnals, both independent of z. Figure 1 is
a sketch of .e situation. We make the basic assumption that the background motion is

4 stable with respect to the initial disturbance.

Our interest is in the motion of fluid particles x = x(X, t), dtefined by

x = X + d(X, t), (4)

and otur particular interest is in the displacement of fluid particles d(X, t). Since pardcles
in any z = constant plane experience the same forces, the displacement field d is ixdepend-
ent of Z.

We assume that at t = 0 the localized disturbance can bc, expressed as

p(X, Y, 0) = pe(Y) + p(X, Y) (5)

and the initial velocity field as

2
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I \ ~REGMO OF 14TIAL PERTURUTIOW

W (y,t)

2 ,Z

Fig. I1-Infinite fluid with tinvgt-dependent background shear flow and an initial
localized disturbance. U(y. t) and W(y. f) are components of the shear flow.

u(X, Y,0) = U(YO0) + 6u(X. Y). (6)

The finite-amplitude initial disturbanice described by Sp and 6u is assumed to vanish as
X -oa* The density 3,(Y) represents the stratification prevailing at large horizontal

distances from the localized disturbance.

Fror the Eulerian equations we find that the backgroux d motion must satisfy

U a2U
PC - P* (7)

and

a W a2W(8)

where u is the mechanical viscosity of the fluid. Equations (7) and (8) state that the
background motion is modified by diffusion. Since we shall deal with an infinite fluid,
we regard the background motion as a specified solution of Eqrv. (7) and (8).

This completes our description of the formal initial-value ptoblem for %aflina-c flows.
Before proceeding with its study, we first make some remzLks r.bout a simi.lar initial-value
problem which axfses in the case of localized regions of turbulent mixing produced by the
motion of a self-p-opelled body through a stratified fluid.

3
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Remarks on the Ditmrbance Created by the Motio of a SW~-?rcpefld Body

We give a brief discussion of a mathematical model for the generation af internal
waves by the turbulent wake of a self-propelled body. The model originated with the
work of Schooley and Stewart [11] and has received much attention from theorists and
experimentalists [1-13). Our aim is to demonstrate that the governing equations for the
mean disturbance (the ensemble average disturbance) bear a cloa re b nblance to those
for the laminar flow already discussed and that useful results follow fortn this fact.

When a self-propelled body moves rapidly through a stratified otwn environment,
its turbulent wake mixes the fluid and initially incmases in cros section through entrain.
ment of fluid ouadt the wake. Eventually the intensity of the turbulence diminishes to
such an extent that buoyancy fo-ces the mixed fluid back toward an appropriate equilib-
rium level and the vertical dimension of the wake reduces in size. This phase of the wake
behavior is referred to as the gravitational-collapse phase and is accompanied by the prop-
agation of internal waves away from the wake region. A primary assumption of the present
mathematical model is that significant mixing of the fluid no longer occurs once the gravi-
tational collapse has begun.

Since the rate at which the moving body getrates mixed fluid is usually large in
comparison to the rate at which gravitational collapse occurs, the assumption is made in
the model that the mean or ensemble average characteristics of the collapse process can
be regarded as independent of distance along the track of the body.

We express the disturbance as

u = U(x, y, t) + U', (9)

P = PAV(X., t) + p', (10)

p P(x. y, t) + p', (11)

where p.., U, P are ensemble average quantities. We use () to indicate an ensemble aver-
age; consequently the fluctuations satisfy

(u') = ,

(p') =0O,

0 o.
Time t is measured from the initiation ,, tne collapse process.

The ensemble average quantities contain the mean background shear flow, the mean
density anomaly due to prior turbulent mixin: of the fluid, and the mean internal wave
disturbance resulting from c.llapse of the dens.ty anomaly. The basic equations govern-
ing the evolution of the ersemble average disturbance are

4
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V-U= 0, (12)

dpa 0, (13)

du -VP + pffg + V-T. (14)

The absence from the right side of Eq. (13) of terms involving the fluctuating quantities
reflects our asumption of Q mixing during the collapse phase.

We can interpret Eqs. (12) through (14) as describing the motion of partic'-s which
move about in accord with the ensemble average motion U(x, y, t). ParticLe paths for the
ensemble average motion : e calculated from

dx = U
dt

Equations (12) and (13) correspond to Eqs. (1) and (2) for the laminar motion discussed
earlier.

It shall be"cae clear that our results for net displacements in the laminar case can
also be deduced for the ensemble average motion just described. The reason for this is
that the results do not depend on the explicit form of the momentum equation, only on
its qualitative features. The features required are that localized disturbancet, eventually
decay, thus allowing the disturbed fluid to return to an equilibrium state specified by the
background shear and density ficid.

TIdE DIRECT PROBLEM

Preliminaries

We now return to the initial-value problem for the laminar flow outlined earlier. In
the direct problem the initial configuration is assumed known. The aim here is to demon-
strate how certain features of the motion can be deduced without having to solve for the
complex flow field. The Lagrangian view is used.

On physical grounds it is clear that as time progresses, the energy contained in the
localized disturbance will be radiated into the surrounding fluid and ultimately dissipated
by viscous forces. Thus eventually t',e .motion will again be horizontal in accord with
Eqs. (7) and (8), with Pe(Y) descr ing the stratificition throughout the fluid. At suf-
ficiently large times the velocity of particles can be written in the form

dx - U(y*,t), (15)

dy
0, (16)

5



W(Y*. n(17)

where

y yN(X,)) (1C)

specifies the final vertical level of the fluid Particle initially c. X, Y.

The iorms of Eqs. (15) through (17) suggest that we write the particle motion in the

xX X+ MX. Y 0)+{ Ufy*,t) dt, (19)

y = Y + 17MYt0 (20)

Z = Z + M., Y. 0) + W(y*, t) dt. (21)

If there were no initial disturbance to the fluid, tfie particle motion would be specified
by Eqs. (19) througi~ (21) with the E, ij, and t terms absent. Consequently, t, t), and
specify the full contribution to the displacement field arising as a consequence of the
gravitational collapse of the initial localkred disturbance

1%.m Eqs. (15) through (17) we contlude that a,. large times (large in comparison
to 4e effective collalise time, which is controlled by the Brunt-Viisili periodl we must
have

lim 11MX Y, 0) = n*(X, Y), (23)

lim M.X Y. 0) = r*(X. Y). j24)

RAe shall d'anonstrate in the following that it is possible to compute aa d i?* dire~ctly
from the inivl data of the problem.

We are making some formal assumptions here. We assume that the initial-value
problem )possesses a well-behaved solution for 04~ t < oc. (A rigorous proof does not
exist.) This requires, in part, that the background flow must be stable, and, from stabil-
ity theory, this places requirements on the Richardson number, as discussed by Turner 115,
pp. 100 ff1.

We must also have the background flow be stable with respect to the localized dis-
turbance of finite amplitude which we prescribe through the initial conditions. The colinpse

6
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may, in some coes, produce internal waves which interact with the background shear in
such a fuhion as to lead to amplification of the waves (critical layer behavior) and to the
pouibility of wave breakdown [15, p. 1241. Such behavior seems to imply that our
inital-value problem does not always possess a well-behaved solution; however general
criteria do not exist. In a recent paper Hartman [161 treats a linearized initial-value
problem for a two-dimensional, unbounded, exponentialy stratified, plane Couette flow.
No difficulties ae encuntered because of critical layer behavior.

Net Vertical Displa~ment

From Eq. (2) the density of a particle at time t must be the same as the densit' of
the particle initially. This yields

plx(t). y z(t), t] = p,(Y) + 6p(X, Y) . (25)

But " t -* 0, y(t) -* y*(X Y), and, since the ultimate density field is again described by
p, Eq. (25) becomes

pe(y*) = p,(Y+r7*) = Pe(Y) + 6p(X, Y). (26)

Equation (26) is the determining conditi(m for the net vertical displacement i1*(X, Y) in
terms of the initial daa.

Although this impacit condition for r* can be solved explicitly for many stratifica-
tions of interest, we record here the solution

??*(X, Y) = (-/ 6p(X, Y), (27)

which is valid for those caes in which pc,(Y) is linear over the vertical extent of the initial
disturbance.

Net Horizontal Displacement

For the determination of t*(X, Y) we use the Lagrangian condition

8(x, y, Z)a~~~)= 1, (28)
a(X. Y, Z) '

which is a consequence of inz-mpressibility and conservation of mass. The notation
indirates the Jacobi-:, of the tranformation expressed by Eqs. (19' through (21). Since
the x and y coordinates of a particle do not depend on Z, Eq. (28j can be simplified to

7
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aax
ax ay ax ax

a..y axa aY 0 = -1. (29)ax BY ay ay
az a x y

ax aY

For the class of problems under consideration Eq. (29) places no restriction on " and our
methods will yield no information about this component of the displacement field.

Substitution of the expressions in Eqs. (19) through (21) into Eq. (29) yields, when
written out,

1 + ++ U(y*, t)d d + U 1.
+ax +ax f "'/ t)) f y a ~~~ ax

It is preferable to write this result in the form

S+ " 1 + a a X aX U(y*. t)dt LY - U(y*, t)=dt - 1,

and carrying out the differentiation of the integrals provides

1 + a an a[ an dt+ [ ... ( (30)Ty* -Tba f T - Y -aY TX

Because

/ay* ay ay* ay ay* ay* ay* ay*
-olim -y )) X Ya = 0,

the limiting form of Eq. (30) as t - - becomes

(1 a*) Wx aa* an* (31)a + Y/ -x X aY -3 W3-Y"*

We have already seen how t * can be determined from the initial data. Equation (31)
then represents a linear fust-order partial.differential equation for the determination of

*(X, Y).

8
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Comparison to the Case of No Shear

The equations for the determination of t*(X, Y) and il*(X, Y) are precisely the same
equations as found earlier [121 in the case of no background motion. In the present case
t* has a different interpretation, since the shear motion itself produces a contribution to

the displacement field. From Ref. 12 we have at once that t* can be solved for by using
the method of characteristics, wil'i the characteristic equations given by

dt* =  - a''Y (32)

= -

do= 1 + ay (33)

dY _ _a*

do ax (34)

The parameter o identifies points on a characteristic. We further have that the character-
istics in the XY plane are those curves specifying the initial forms of tw;- isopychnals.

In the earlier case of no shear [12] we confined ourselves to symmetric disturbances.
We then had t*(o, Y) = 0 as initia! data for the solution of Eqs. (32) through (34). In
the presence of shear however we no longer have such a condition even for symmetric
disturbances. Consequently the initial data available allow thr determination of only the
relative quantity t*(X, Y) - t, where P. is the unknown valae of t*(X, Y) for some
point on the same isopychnal that the. point (X, Y) is on.

A Simple Application to the Net Convergence of Fluid Particles

Stockhausen, Clark, and Kennedy [13] describe a laboratory experiment in which a
self-propelled bodly moved through a stratified fluid. They give an argument [13, pp. 72
and 78] that a net convergence between two fluid particles can occur only when the
particles are at a depth level where mixing has taken place.

We give here a rigorous proof that the statements of Stockhausen, Clark, and Kennedy
apply to the initial-value problem we have been examining. Consider two fluid particles
P and Q initially on an undisturbed isopychnal as shown in Fig. 2. We have 6p(X, Y) = 0
for all points on the isopychnal, and Eq. (26) provides the result that r7*(X, Y) = 0 for
all points on the isopychnal. Using this result in Eqs. (32) through (14), we get dt*/dX = 0,
ano' this can be integrated to obtain t*(P) = t*(Q).

Since y*(X, Y, = Y for all points on the isophchnal, Eqs. (19) through (21) provile

ft
x(P, t) = Xp + (P, t) + U(Yp, t) dt

4 1 0

and, since YQ = I

9
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a.X

REGION CONTAINING THE INITIAL DISTURBANCE

Fig. 2-State of disturbance at t -0in thexy plne, with the dahed
lines indicating the re,)on containing the initial disturbance. P and Q
identify two fluid particles lying initially or an undisturbed iso
pychnal The component of the background shear flow normal to the
xy plane is not drawn.

x(Q, 0) XQ + (Q, 0) + f. U(Yp, t) dt .
0

Subtracting the two eicpreshions, we get

X(PAt0 - X(Q't0 = Xp - XQ + W. 0t - V(Q 0).

The limit of thisas t-o provides theultimate separation of the particles Pand Qin the

x irctonx*(P) -x*(Q) = XP - XQ+ 0P() O )

= XP - XQ ,

which is precisely equal to their initial separation.

We conclude thaat ro net convergence occurs between particles such as P and Q lo-
cated on an isopychnal outside the region of initial disturbance. A net convergence can
occur only if P and Q are at the level of the initial disturbance region. This is perhaps
an unexpected result. One's initial expectation is that as the initial disturbance resoives

~. I itself into a system of internal waves which propagate through the body of the fluid, the
end result would be particles whose locations have been shifted about relative to one
another. The severe constraint conferred on the fluid by stratification prevents such relative
shifting.

10
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IEMARKS ON THE INVERSE PROBLEM

A matter of great practical importance is the nature of the disturbance in the fluid
at the end of a brief period 3f localized, turbulent mixing. The complexity of the ph.-
nomena makes such information difficult to obtain by direct measurement.

We consider, within the context of our initial-value problem, an indirect method for
obtaining information about the initial deformation of the isopychnals. In effect we con-
sider an inverse problem in which it is assumed that the background stratification is known
as well as the shapes of the disturbed region at t = 0 and at sone time t large in comperi-
son to the time scale of collapse. An earlier report [121 dealt with this question in the
case of a zero shear environment. Although the earlier results can be generalized to the
situation of collapse in a shear environment, we prefer to give instead a rew residt which
seems to be more generwily useful.

Colider the initial configuration of the fluid as shown in Fig. 3a. By hypothesis we
know the boundary C within which the initial disturbance is confined. A typical iso-
pychnal of density p. which passes through C has a form as shown in Fig. 3a. Outside C
the iscpychnal is horizontal at its equilibrium level, while inside C it is deformed. Let
A(P e , t) denote the area enclosed between the material particles initially composing the
isopychia: p. and the particles which initially form the boundary C lying above the iso-
pychnal (Fig. 3). As a consequence of the incompressibility of the fluid this area remains
constant throughout the motion, so that

A(pe,t) = A(p e , 0 )

for all time.

We now prve that the area A(p e , t) is always bounded by C and the isopych Pe"
From the nondiffusive nature of the fluid we know that the fluid particles retain their
density throughout Lhe motioa. Consequently isopychnals are material curcs, as is the
curve C. We conclude that A(p e , t) is always bounded by the particles comprising C and
the isopychnal Pe.

By hypothesis we know the initial and "final" configurations of the material contour
C. A final configuration o. the fluid is one in which the isopychnals must be horizontal
and at the same level as given by the known initial data. Therefore we can evaluate
A(pe, 00) for any isopychnal passing through C and, by the above argument, we then have
A(pe, G, for each isopychnal passing through the initial contour C.

From Fig. 3a it is clear that knowledge of A(Pe, 0) can be used to calculate the area
enclosed between the position of the deformed isopychnal Pe and its final equilibrium
level. This information immediately provides the average level of the isopychnal Pe within
the initial region.

We thus have a means for using the initial and final shapes of the disturbed fluid to
estimate average characteristics of the initial disturbance. This method may prove to be
of use in estimating such quantities as the degree of homogeneity of localized disturbances.
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B~OUNDAY C

(a) t -0

Mpe,0) ISOPYCIINAL p,

(b) t >> time scale of collapse

Fig. 3-Initial and final configurations of the region contain-

ing the initial disturbance. C denotes the boundary of the
region in the xy plane. A(p., t) is the area at time t enclosed

• between the isopyehnal of density p, and the boun&;zy C.

CONCLUSION

We considered an ;nitial-value problem involving a two-dimensional locaiized disturb-
ance in an incompressible, viscous, stratified fluid. A time-dependent background shear
flow was incorporated in the analysis. Although the problem was considered within the
fn uework of laminar flow theory, we pointed out that similar results can be obtained
for the ensemble-average motion resulting from the collapse of° a localized region of
turbulent mixed fluid.

The results are perhaps best thought of as an extension of earlier results [1.21 ob-
tained for the case of no background motion. Again the Lagrangian view has oeen used
to advantage.

It was demonstrated for the general class of initial-value problems considered that
certain components of the net displacement field could be calculated directly from the
initial data. This calculation is effectively exact and holds for finite-amplitude disturb-
ances. A simple application was made to the net co:-:.ergence of fluid particles. A poten-
tial applcation of the results is in the partial verification of computer algorithms devised
for the solution of initial-value problems of the type con-idered.

I
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We also examined the inverse problem, which is of particular interest in the experi-
mental investigation of localized mixed regions in stratified fluids. The intent of the in-
verse problem is to use limited knowledge of the net displacement field, such as might be
obtained by simple measurements, to infer characteristics of the initial disturbance. We
demonstrated that knowledge of the initial and final material configurations of the shape
of the region containing the initial disturbance provides a means for estimating mean
characteristics of the initil i,.opychnal deformation. Thus our study of the mathematical
problem suggests that a certain correlation must exist between the shape of the mixed
region and the initial disturbance.
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